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Abstract—The [Cp*IrCl2]2/K2CO3 catalyzed hydrogen transfer N-heterocyclization on a series of anilino alcohols has been investi-
gated. The catalyst (20% loading) converts anilino alcohols to 1,2,3,4-tetrahydroquinoxalines and 2,3,4,5-tetrahydro-1H-
benzo[b][1,4]diazepines in 30–84% isolated yield.
� 2006 Published by Elsevier Ltd.
We recently became interested in new methods for the
synthesis of substituted 1,2,3,4-tetrahydroquinoxalines
as part of a medicinal chemistry program. Compounds
containing these heterocyclic cores have demonstrated
a wide range of biological activities. Some 1,2,3,4-tetra-
hydroquinoxaline containing structures (Fig. 1) have
been pursued as prostaglandin D2 receptor1 antagonists
(1) and vasopressin V2 receptor antagonists (2).2

At present, there are a limited number of methods for
preparing 1,2,3,4-tetrahydroquinoxalines. A common
strategy involves the reduction of quinoxalines.3 This re-
quires that the starting aromatic quinoxaline be appro-
0040-4039/$ - see front matter � 2006 Published by Elsevier Ltd.
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Figure 1. Biologically active 1,2,3,4-tetrahydroquinoxalines.
priately substituted so that it is reduced to the desired
tetrahydro species and does not allow for the formation
of quaternary centers. An alternate strategy involves the
metal-mediated reaction of 1,2 dianilines with 1,4 butene
diol and acetate derivatives to form 2-vinyl 1,2,3,4-tetra-
hydroquinoxalines.4 Although the 2-vinyl 1,2,3,4-tetra-
hydroquinoxalines are formed in high yield, this
method is limited to symmetrically substituted dianilines
to avoid mixtures of regioisomers. Additional methods
to prepare 1,2,3,4-tetrahydroquinoxalines involve inter-
molecular Michael additions,5 tandem reduction–reduc-
tive amination reactions6 and the reduction and SN2
cyclization of nitroarenes with leaving groups.7,8

Recent reports of the Cp*Ir-complex hydrogen transfer
N-heterocyclization9 to form indoles,4 tetrahydroquino-
lines,10 and lactams11 prompted us to investigate this
transformation as a new method to form 1,2,3,4-tetra-
hydroquinoxalines from anilino alcohols (Scheme 1).
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This approach would allow direct preparation of
1,2,3,4-tetrahydroquinoxalines (B) from anilino alcohols
(A) in a catalytic and regioselective fashion that would
allow for the incorporation of quaternary centers. The
required substrates are easily prepared from substituted
ethanolamines and ortho-nitro aryl fluorides via SNAr
reactions12 and the catalyst (3) is now commercially
available. The proposed mechanism9,10 for N-hetero-
cyclization is thought to begin with initial Oppenauer-
type oxidation of the alcohol followed by cyclization
and reduction of the imine intermediate by the cata-
lyst system.

One of the first systems studied was 3-(2-aminophenyl-
amino) ethanol (4), which should undergo hydrogen
transfer to produce 1,2,3,4-tetrahydroquinoxaline (Ta-
ble 1). Conditions similar (10% 3, 10% K2CO3, toluene
sealed tube 110 �C) to those used by Fujita and Yama-
guchi10 were utilized to study the transformation. These
Table 1. a
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a Reactions performed in a sealed tube at �120 �C in toluene at 0.25 M with
b All yields based upon isolated material after chromatography.
c Xylene was used as a solvent and the reaction was run at 140 �C.

Table 2.

Substrate Product

NH2

N
OH

8
N

H
N

NH2

N
OH

9 N

H
N

NH2

N
OH

Br

10
N

H
NBr

NH2

N
OH

F

11 N

H
NF
conditions failed to produce the desired 1,2,3,4-tetrahy-
droquinoxaline even after several days of heating. Cata-
lyst (3) loading was increased to 25% and the solvent
was switched to xylenes, in order to increase the temper-
ature of the reaction, and the product was formed in
30% yield after five days.

Since the hydrogen atom transfer reaction on substrate 4
was sluggish compared to the simpler published sys-
tems,10 we decided to study the effect of substitution
on N1. The extra heteroatom in our substrates may
allow bis coordination with iridium and render catalyst
turnover less efficient. The N-methylated substrate 5
produced the desired 1,2,3,4-tetrahydoquinoxaline in
modest yield after eight days with 10% of 3. Increasing
the catalyst loading to 25% also increased the yield to
80% with the reaction being complete after 17 h. We also
investigated N-heterocyclization for N-benzyl substrate
6, which was converted to product in low yield with
Catalyst (3) (%) Time Yieldb (%)

10 4 d NR
25 5 d 30c

10 8 d 52
25 17 h 80
20 4 d 19
20 4 d NR

K2CO3 content equal to catalyst.

Catalyst (%) Time Yield (%)

20 2 d 64

20 2 d 59

20 3 d 62

20 3 d 64



Table 2 (continued)
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some debenzylated material produced. No desired
product was isolated when N-heterocyclization was
attempted on tosyl protected aniline 7. After several
days, �80% of the starting material was recovered.

After our initial experiments, we decided to investigate a
series of substrates with 20% catalyst (3) loading under
our standard conditions.13 We chose a series of N1
methyl substrates (8–13) with various aromatic substitu-
tions along with a 2,2-dimethyl substrate (14) and
homologated substrate (15). In general, yields were
�60% regardless of substitution with electron donating
or withdrawing groups. The weakly donating methyl
groups for substrates 8 and 9 produced marginally faster
reactions. The strong electron donating groups in 12 and
13 did not increase the reaction rate. Substrate 13 with
the methoxy para to the aniline nitrogen underwent a
side reaction to produce significant amounts of the
3,4-dihydroquinoxalin-2(1H)-one (18%). This byprod-
uct was observed in low (1–5%) amounts for several of
the substrates studied.11 The 2,2-branched free aniline
14 produced the highest yield of product with the short-
est reaction time. Since 14 is sterically hindered around
N1, the nitrogen’s ability to bis coordinate iridium
may be attenuated producing a faster transformation
and/or the dimethyl substituents may produce a more
favorable conformation for cyclization.14 We were
pleased to observe cyclization of 1515 to the 7-membered
1-methyl-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepine.
The extended reaction time needed is likely due to the
less favorable 7-endo cyclization mode (Table 2).

In summary, we have described a new and convenient
method to prepare 1,2,3,4-tetrahydroquinoxalines and
2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepines directly
from anilino alcohols using catalytic amounts of 3.
This reaction allows for the incorporation of quaternary
centers in a regioselective manner. Reaction times
vary from one to seven days using 20% catalyst loading
with yields averaging 63%. Substrates that are sterically
hindered at the 2-position, or alkylated at N1,
produce higher N-heterocyclization yields with shorter
reaction times.
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